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Abstract: Source code analysis can predict defective code regions, help developers to fix bugs and 
prioritize test overhead. Learning based methods fail to achieve promising performance on 
cross-file and cross-project tasks. Meanwhile, existing code review software works seriously 
depend on specific compiler or virtual compiler. If source code cannot be compiled the tools do not 
work. We first propose to extract function blocks from abstract syntax trees, embed them to code 
image and construct convolutional neural networks to learn embedded images deep, which produce 
some categorical models for source code defect classification. We have evaluated the proposed 
methodology on some experiments to analysis memory related defects in snippets function by 
function. Experimental results showed without compiling source code it is analyze some and find 
historical code defect such as CVE-2018-0732, CVE-2018-0737 and CVE-2018-0739. 

1. Introduction 
Source code defects or flaws probably lead to software vulnerabilities can potentially result in 

huge damages to businesses and people live, especially with the explosive growth of software. Once 
software attacked and exploited, it become threaten to society security including business, 
government and citizen property. Like the exposed Openssl Heartbleed in 2014, which has affected 
billions of consumers in university, enterprise and governments. Various defect prediction 
techniques have been proposed along the software life cycle to reduce the damages from software 
vulnerability [1].  

Static source code analysis (SCA) provides to prevent vulnerability eruption in primitive stage of 
software development. Classical SCA techniques commonly formulate rules from software data, like 
source code, introduction documents and released programs, to distinguish whether given snippets 
contain flaws or not. Recently attempts on SCA mainly fall into two categories: one is to explore 
new representation of code defects or make some combination of existing code features pursuing 
more effective expression like Halstead features based on operator and operand counts [2], McCabe 
features based on dependencies [3], CK features based on function and in- heritance counts, etc. [4], 
MOOD features based on polymorphism factor, coupling factor, etc. [5]. The other exploited 
learning based algorithms to acquire code patterns for defect classification or detection, including 
Support Vector Machine (SVM) [6], Naive Bayes (NB) [7], Decision Tree (DT) [8], convolutional 
Neural Networks (CNNs) [9], and recurrent Neural Networks (RNNs) [10]. 

Unfortunately, existing features cannot deal with code snippets analysis of different functions. 
Source files with different functions curved same values with some traditional features. Semantic 
features contained in source code is capable of distinguish aforementioned functions, learning based 
algorithms have been employed to learn semantic representation from program abstract syntax tree 
(AST) automatically to improve defect detection [11]. However, these methods do not show an 
intuitive expression to understand. Additionally, a realistic factor of compiling dependency result in 
complex pre-review work and waste a lot time. For instance, famous code review tools like Fortify 
and Coverity, before scanning program source code must be compiled or configured, otherwise the 
tools cannot work. The configuration and compiling take more time than code review sometime, 
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meanwhile these tools do not support code snippets audit.  
In summary, these factors lead to high time consuming and limited adaptation scenarios in code 

scanning. During research on source code analysis we found it surprise when embedding code to 
images, it shows indistinguishable difference to the naked eye between vulnerable code and 
non-vulnerable code showed in Figure 1. To explore accurate prediction models, we propose to 
embed source code to image and construct a deep learning model for defect code classification in 
function level without code compiling dependency. 

 
Figure 1. An example of motivation 

2. Embedding Code to Image 
Image hold on sufficient information of both salient and latent features in the way of statistics. 

Vulnerable code represented obvious difference from normal code which is indistinguishable to the 
naked eye in embedded images. In this paper, we first propose to exploit image analysis in SCVD 
from three aspects: embed function to vector, transform vector to image and image analysis. 

2.1 Embedding code to vector 
Distributed representations of words, sentences, paragraphs, and documents played a key role in 

unlocking the potential of neural networks for NLP tasks. Methods for learning related distributed 
representations can produce low-dimensional vector representations for objects, referred to as 
embeddings, such that semantically similar objects are mapped to close vectors. 

To embed code by vector representation, the objective is to make the average log probability 
maximum when giving a code snippet f1, f2… fn, n is a real number. 

𝑓𝑓𝑣𝑣 =
1
𝑇𝑇
� 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑓𝑓𝑚𝑚|𝑓𝑓𝑚𝑚−𝑘𝑘, … , 𝑓𝑓𝑚𝑚+𝑘𝑘)
𝑇𝑇−𝑘𝑘
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𝑐𝑐𝑛𝑛  =  {𝑓𝑓1,𝑓𝑓2, … , 𝑓𝑓𝑚𝑚 } 
Put it as a classification problem, vulnerable code prediction can be done by a softmax classifier: 

 𝑝𝑝(𝑓𝑓𝑚𝑚|𝑓𝑓𝑚𝑚−𝑘𝑘, … , 𝑓𝑓𝑚𝑚+𝑘𝑘) =
𝑒𝑒𝑦𝑦𝑓𝑓𝑚𝑚
∑ 𝑒𝑒𝑦𝑦𝑖𝑖𝑖𝑖

 

yi represents for the log probability without normalization for each code word i, calculated as: 

𝑦𝑦 = 𝑏𝑏 + 𝑈𝑈ℎ(𝑓𝑓𝑚𝑚−𝑘𝑘, … , 𝑓𝑓𝑡𝑡+𝑘𝑘;𝑊𝑊) 

Where U and b are 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 parameters. h is a average word vector extracted from matrix W, 
which is generated from word2vector framework.  

               
         (a1)Vulnerable code                     (a2) embedded image of (a1) 

               
         (b1) Non-vulnerable code                 (b2) embedded image of (b1) 
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Word vectors usually contribute to predicting next word in sentence. Code snippet embedding task 
stands on the shoulders of giants is a kind of paragraph vector model implementation for classification 
rather than predicting next word in classical way. In our work, a code snippet is defined as a function 
block extracted from AST, transformed to a long code sequence split by space and tokenized. Then we 
embed code sequence to matrix D with a fix size of L*M, meanwhile, each code is encoded by a vector 
of length L. The most significant adjustment is that h is a combination parameter constructed from W 
and D otherwise single W. 

2.2 Normalize vector to image 
W and D show abstraction of code snippet which is difficult to understand. Fortunately, image 

provide more intuitive pattern to distinguish whether it is normal or buggy in statistics, such as color 
space. Figure 1 displayed an example of motivation. Vectors from code level and snippet level 
embedding preserve adequate semantic information. Images are also matrix or vectors in nature. The 
main difference for people is that W or D yields an one dimension vector, image falls to M*N 
dimension matrix by default and for color image with an extensive channel C in various color spaces. 

With the foundation of semantic feature, we exploit image features to predict code defect. Suppose 
Fs means the combination of W and D; the corresponding snippet image Is can be embedded as: 

𝐼𝐼𝑠𝑠  =  𝑓𝑓 (𝐹𝐹𝑠𝑠) 
f is a normalization function to transform W and D into color space with a 3 channels color image of 

M*N*C dimension. For instance, in RGB color space each pixel various from 0 to 255 with 3 channels. 
Therefore, we map elements in W and D in range 0 to 255 to show its color density. In simplest case, 
we regularize vectors to M*N dimension of 1 Channel (C=1). In the normalized image, each pixel is 
described as I(x, y): 

𝐼𝐼(𝑥𝑥, 𝑦𝑦) =  255 ∗ (𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚)/(𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚) 

Ultimately, the collection of 𝐼𝐼(𝑥𝑥,𝑦𝑦) contribute to a code snippet image I. 
  

3. Experiments and results 
We carry on several experiments to evaluate the performance of the proposed image based deep 

learning method and make comparison with existing learning based models. We conduct 
experiments on a Linux server with 4*Titan Xp GPU, 2* E2683 v4 CPU, 256 GB RAM, 2T SSD 
and 4T SATA disk and Ubuntu desktop system 16.04. 

3.1 Datasets 
We construct training set, validating sets and test sets from the Software Assurance Reference 

Dataset (SARD), which provides users, researchers and software security assurance tool developers 
with a set of known security flaws. This will allow end users to evaluate tools and developers to test 
or evaluate their methods. These test cases are designed source code and binaries from all the phases 
of the software life cycle. Meanwhile, it includes "wild" (production), "synthetic" (written to test or 
generated), and "academic" (from students) test cases. This database will also contain real software 
application with known bugs and vulnerabilities, which makes contribution to annotating the 
extracted functions. Test sets and training sets are split by 1/4, which lead to 98004 functions for test 
and 392016 functions for training. During training state 5-fold cross validation was implemented. 

3.2 Model Setting 
The proposed method transform context to image for vulnerability discovering task. Finally, we 

also compare aforementioned model with our previous work, which utilize code property graph to 
detect defect code. The results of efficiency evaluation. All the functions are extracted in SARD, 
each function is labeled by ‘0’ of normal code or ‘1’ of vulnerable code. Then we embed functions to 
images of 40*25 in pixel as DLM input, batch size is set of 128 and epoch number is 100, 
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additionally Adam is selected as the optimizer and in the last activation layer sigmoid is employed.  
Table.1. Results of efficiency evaluation (%) 

 Loss Accuracy Recall Fmeasure FP FN TP 
training 2.54 99.06 98.97 99.01 0.85 1.03 98.97 

validation 9.721 84.71 85.91 84.25 16.42 14.09 85.91 

4. Results and conclusion 
We get corresponding evaluation results showed in TABLE 1 with a custom CNN model with 5 

convolution layers and for each following with a max pooling operation for SARD datasets. 
Experimental showed the proposed method is effective for code defect analysis by embedding them 
to images. Even more surprising is that we performed defect code detection on Openssl 1.0.2n and 
found some confirmed vulnerable code such as CVE-2018-0732, CVE-2018-0737 and 
CVE-2018-0739. 

Through exhaustive illustration, the insight of embedding source code to image for defect analysis 
using CNN works well in code snippet which survive without compiling source code. Unfortunately, 
data scale and annotation constrained the effectiveness of the method. In future, we will focus on 
expanding source code database scale and exploring unsupervised method to further optimize the 
image based source code analysis. 
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